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Outline

▶ Games

▶ Traces

▶ Representing games coalgebraically

▶ Strategies

▶ Traces via strategies
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Motivation: controller synthesis

▶ Model the possible actions of the
controller and the environment as a game.

▶ We have specification (as a logical
formula).

▶ Synthesis question: is there are a
controller strategy which every play
satisfies the specification?

▶ Example “every request is served” (a
liveness property)
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Two-player games

▶ Bipartite game graph

▶ Observation after environment transition

▶ A play is a sequence of states and observations, arising from
controller and environment moves, ending in a terminating
observation.

▶ A strategy is a partial function which extends partial plays, it
must be defined over all partial plays which conform to it.
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(Finite) Traces for labelled transition systems

▶ A trace is a sequence of observations from a process.

▶

▶
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▶ A trace starting at a state x0 ∈ X is a sequence

a1a2, . . . anb ∈ A∗B

such that there is an execution

x0a1x1a2 . . . anxnb ∈ (XA)∗XB

with the property

∀i < n : (ai+1, xi+1) ∈ c(xi ) and b ∈ c(xn)
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▶ A trace starting at a state x0 ∈ X is a sequence

a1a2, . . . anb ∈ A∗B

such that there is an execution

x0a1x1a2 . . . anxnb ∈ (XA)∗XB

defined by the property

∀i < n : R(xi , (ai+1, xi+1)) and R(xn, b)

P is a monad with Kl(P) ∼= Rel
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Traces, coalgebraically

A∗B is the initial algebra for the functor B + A(−) : Set → Set

Set A∗B

B B + AB B + AB + AAB · · ·

κ0 κ1 κ2

coinductive finite traces [HJS07], limit-colimit coincidence [SP82] 6 / 24
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category of relations, and reverse the arrows1:

Kl(P) A∗B
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Traces by coinduction

For every LTS c : X → P(B + A× X ), there is a unique coalgebra
morphism into A∗B.

Rel X A∗B

B + A× X B + A× A∗B

c ∼

This dashed morphism in Rel is a function X → P(A∗B) which
assigns each state to it’s set of traces!
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Executions by coinduction

▶ We have been using a functor H := B + A× (−)

▶ With a PH-coalgebra c : X → PHX

▶ Now use a modified version HX := X × (B + A× (−))

▶ With c∗ : X → PHX (X ) defined as the composite

(X
⟨id,c⟩−−−→ X × P(B + A× X )

stl−→ P(X × (B + A× X ))

x 7→ {(x , u) | u ∈ c(x)}

▶ With the same apparatus as before, we can obtain an
execution map execc : X → P((XA)∗XB)

▶ And it follows from a general coalgebraic result that:
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▶ Now use a modified version HX := X × (B + A× (−))

▶ With c∗ : X → PHX (X ) defined as the composite

(X
⟨id,c⟩−−−→ X × P(B + A× X )

stl−→ P(X × (B + A× X ))

x 7→ {(x , u) | u ∈ c(x)}
▶ With the same apparatus as before, we can obtain an

execution map execc : X → P((XA)∗XB)

▶ And it follows from a general coalgebraic result that:

Rel

X (XA)∗XB A∗B
execc

trc

fπ2 where π2 : HX (Y ) → H(Y ).
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Recap

Because the monad P has lots of nice properties, we automatically
get trace/execution maps:

Rel

X (XA)∗XB A∗B
execc

trc

fπ2

x ba

execc(x) = {xb, xaxb, xaxaxb, xaxaxaxb, . . . }

trc(x) = {b, ab, aab, aaab, . . . }
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Games

Recall:

b2

b1

a1a2

How do we turn this into a function X → M(HX )?
i.e. Which monad M do we choose?
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Finding the monad

b2

b1

a1a2
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Finding the monad

x0

b2 x1

b1

a1a2

c : X → PP(B + A× X )
c(x0) = {{b1, a1x1}, {b2}}
c(x1) = {{b2, a2x0}}
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Finding the monad

x0

b2 x1

b1

a1a2

c : X → PP(B + A× X )
c(x0) = {{b1, a1x1}, {b2}}
c(x1) = {{b2, a2x0}}

Is PP a monad?
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How do I squash PPPP(X ) → PP(X )?

Let A,B,C ,D,E ⊆ X

A

B

C

D

E

7→
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C

D

E

7→
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How do I squash PPPP(X ) → PP(X )?
Let A,B,C ,D,E ⊆ X

A

B

C

D

E

7→

A ∪ C

A ∪ D

B ∪ C

B ∪ D

E

{{{A,B}, {C ,D}}, {{E}}} 7→ {A ∪ C ,A ∪ D,B ∪ C ,B ∪ D,E}

Υ ∈ PPPP(X ) 7→ {
⋃
Im(f ) | ∃υ ∈ Υ, f : υ

∗−→ PP(X )}

where f : υ
∗−→ PP(X ) is a choice function: ∀U ∈ υ : U ∈ f (U).
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Failure of associativity

x2

x1

x2

x1

x2

x1

x2

x1

=

x2

x1

A monad structure on PP is a ”no-go” [KS18] 13 / 24
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(Weak) Distributive laws

Two solutions:

▶ Use multiplicities for the environment

▶ Modify our strategy picking procedure to include “convex
choices”

▶ Both of these can be phrased in terms of monad distributive
laws

▶ Given two monads (S , µT , ηT ) and (T , µT , ηT ), a distributive
law δ : TS → ST is a natural transformation satisfying some
coherence conditions involving µT , µS , ηT , ηS .

▶ A weak distributive law δ : TS → ST only satisfies the
diagrams involving µT , µS , ηS .

This weakening of distributive laws were popularised by [Gar20], for discussion of convexity see [BS22] 14 / 24
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A weak distributive law δ : PP → PP
▶ Gives us a way of swapping environment-then-controller

branching into controller-then-environment.

x1

x2

x3

x4

7→

{x1, x3}
{x1, x4}
{x2, x3}
{x2, x4}

{x1, x2, x3}
{x1, x2, x4}
{x1, x3, x4}
{x2, x3, x4}

{x1, x2, x3, x4}

δ({Ui}i∈I ) = {
⋃
i∈I

Vi | Vi ⊆+ Ui for all i ∈ I}

This law is used in [Goy21, Chapter 4] to model alternating automata 15 / 24
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Trace semantics

▶ We can build a monad

P̃P(X ) = {U ⊆ X | U is closed under arbitrary union}

η(x) = {{x}} µ uses δ

▶ Recall: General categorical machinery allows us to lift this
chain to the category of relations, and reverse the arrows:

Kl(P̃P) A∗B

B B + AB B + AB + AAB · · ·

π0 π1 π2

with various assumptions on P̃P
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Traces and Executions

A∗B is the final B + A(−)-coalgebra in Kl(P̃Q).

Kl(P̃Q) A∗B

B B + AB B + AB + AAB · · ·

π0 π1 π2
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2
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{b1} No
{b2} Yes
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(Theorem sketch) for all U ⊆ A∗B:
U ∈ trc(x) =⇒ there is a strategy which enforces U
U ∈ trc(x) ⇐=∗ there is a strategy which enforces U
*almost
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Executions on the final sequence

Kl(P̃Q)

X H(X ) H2(X ) H3(X ) · · ·

0 H(0) H2(0) H3(0) · · ·

0 XB XB + XAXB (XA)<3XB

(XA)∗XB

!

c∗

H(!)

H(c∗)

H2(!)

H2(c∗)

H3(!)

π0
π1

π2

π3

where H : Kl(P̃Q) → Kl(P̃Q) is the lifting of X × (B + A× (−))
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Where are the strategies?

▶ σ0 : 1 → Q(X ) will pick an initial state

▶ σn+1 : Im(σn) → QHn+1(X ) extends an n-length play

Kl(Q) X

1 Im(σ0)

σ0
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Ĥn(X ) Ĥn+1(X )
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The n-depth plays comes from composition:

playσn = (1 99K Im(σ0) 99K · · · 99K Im(σn) ↣ Hn(X ))
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Play outcomes
To define the play outcome, first lift a strategy into Kl(P̃Q)

ηP ◦ σn : Im(σn) → P̃QHn+1(X )

Then we can reuse that (XA)∗XB is the limit of the final sequence:

Kl(P̃Q)

1

X H(X ) H2(X ) H3(X ) · · ·

0 H(0) H2(0) H3(0) · · ·

0 XB XB + XAXB (XA)<3XB

(XA)∗XB

ηP◦playσ0
ηP◦playσ1

ηP◦playσ2
ηP◦playσ3

playσc

! H(!) H2(!) H3(!)

π0
π1

π2

π3
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Main theorem

Theorem
execc(x) =

⋃
σ starts in x

playσc

Lemma
c∗n(x) = {playσn | σ starts in x}

▶ What do we gain from doing this coalgebraically?
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Conclusion

▶ Towards strategy synthesis...
▶ Product construction?
▶ General theorem about memoryless strategies?
▶ Infinite traces, continuous probability monads?

▶ An axiomatic presentation.

▶ Simple stochastic games?

24 / 24
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